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EXTENSION OF THE METHOD OF SPATIAL HARMONICS 
TO THREE DIMENSIONS 

James A. Moorer 
 
We start with the method of spatial harmonics in 2 dimensions (in a plane). The results of this methodology 
are (1) a way of recording surround sound that can be used to feed any number of speakers (2) a way of 
panning monaural sounds so as to produce exactly a given set of spatial harmonics, and (3) a way of storing 
or transmitting surround sound in 3 channels such that 2 of the channels are a standard stereo mix, and by 
use of the third channel, the surround feed may be recreated that preserves the original spatial harmonics. 
 
This same theory may be extended to 3 dimensions. It then requires 4 channels to transmit the 0th and 1st 
terms of the 3-dimensional spatial harmonic expansion. It has the same properties for matrixing, such that 2 
channels may carry a standard stereo mix, and the other two channels may be used to create feeds for any 
number of speakers around the listener. Unfortunately, the mathematics for the 3D version is not as clean 
and compact as for 2D. There is not any particularly good way to reduce the complexity. 
 
To extend the method of spatial harmonics to 3 dimensions, we need to briefly discuss the Legendre 
functions and the spherical harmonics. In some sense, this is a generalization of the Fourier sine and cosine 
series. The Fourier series is a function of one angle, f. The series is periodic. It can be thought of as a 
representation of functions on a circle. Spherical harmonics are defined on the surface of a circle, and are 
functions of two angles, q and f. f is azimuth. Zero degrees is straight ahead. 90± is to the left. 180±  is 
directly behind. q is declination (up and down). Zero degrees is directly overhead. 90±  is the horizontal 
plane, and 180± is straight down. Note that the range of q is zero to 180± , whereas the range of f is zero to 
360± (or -180± to 180±). 
 
The common definition of spherical harmonics starts with the Legendre polynomials, which are defined as 
follows: 
 

n
n

n

nn d
d

n
P )1(

!2
1

)( 2 −≡ µ
µ

µ  

 
From these, we can define Legendre’s associated functions, which are define as follows: 
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Both the Legendre polynomials and the associated functions are orthogonal (but not orthonormal). We have 
to specifically give these definitions, since some authors define them slightly differently. 
 
Although these are polynomials, they are turned into periodic functions with the following substitution: 
 

θµ cos≡  
 
From these, an expansion of a function in polar coordinates can be made as follows: 
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The functions θcosnP , )(coscos θφ m
nPm , and )(cossin θφ m

nPm  are called spherical harmonics. 

This expansion has an equivalence to the Fourier series, but it is relatively messy to actually derive it. What 
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you do is to fix the value of q  at, say, 90±. The remaining terms collapse into something that is equivalent to 
the Fourier sine and cosine series. 
 
For a function that is just defined on the circle, there are 1+2T coefficients for a series that include 

harmonics 0 through T. For the spherical harmonic expansion, the total number of coefficients is 2T . 
 
When applied to sound, this can be though of as the sound pressure on the surface of a microscopic sphere 
at a point in space. This sphere can be taken to be the location of a listener. We will use this expansion to 
guide us through the generation of pan matrices and microphone processing for sounds that may originate 
in any direction around the listener. 
 
We start by taking the function on the sphere that we want to approximate to be a unit impulse in the 
direction ),( 00 φθ  to the listener. 

 
For compactness, we define 0µ  as follows: 

 

00 cosθµ ≡  

 
 
We can then state the expansion of a unit impulse in that direction can be calculated to be the following: 
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Now let us place N speakers around the listener at angles of ),(,),,(),,( 2211 NN φθφθφθ L . We then 

seek gains to each of the speakers, ig , so that the resulting sound field around a point at the center 

corresponds to the desired sound field ( ),(0 φθf  above) as well as possible. We may obtain the gains by 

requiring the integrated square difference between the resulting sound field and the desired sound field be 
as small as possible. The result of this optimisation is the following matrix equation: 
 

SBG =  
 
where G is a column vector of the speaker gains: 
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The other terms may be computed as follows: 
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Note that this is similar to the expansion of the unit impulse in a certain direction but for the term m)1(− .  
Although the first summation is written without an upper limit, in practice it will be a finite summation. 
The rank of the matrix B  depends on how many terms of the expansion are retained. If the 0th and 1st terms 
are retained, the rank of B will be 4. If one more term is taken, the rank will be 9. Needless to say, the rank 
of B also determines the minimum number of speakers required to match that many terms of the expansion. 
 
Any number of speakers may be used, but the system of equations will be under-determined if the number 
of speakers is not a perfect square number. There are various ways to solve the under-determined system. 
One way is to solve the system using the pseudo-inverse of the matrix B. This is equivalent to choosing the 
minimum-norm solution, and provides a perfectly acceptable solution. Another way is to augment the 
system with equations that force some number of higher harmonics to zero. This involves taking the 
minimum number of rows of B that preserves it rank, then adding rows of the following form: 
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It doesn’t make much difference exactly which of these are taken. Each additional row will augment the 
rank of the matrix until full rank is reached. 
 
Thus we have derived the matrix equation required to produce speaker gains for panning a single 
(monophonic) sound source into multiple speakers that will preserve exactly some number of spatial 
harmonics in 3 dimensions. 
 
 
Sound-Field Microphones: 
 
A standard directional microphone has a pickup pattern that can be expressed as the 0th and 1st spatial 
spherical harmonics. The equation for the pattern of a standard pressure-gradient microphone is the 
following: 
 

{ })cos(sinsincoscos)1(),( Φ−Θ+Θ−+= φθθφθ CCf  
 
Q and F are the angles in spherical coordinates of the principal axis of the microphone. That is, they are the 
direction the microphone is “pointing.” The constant C is called the “directionality” of the microphone and 
is determined by the type of microphone. C is one for an omni-directional microphone and is zero for a 
“figure-eight” microphone. Intermediate values yield standard pickup patterns such as cardioid (1/2), 
hyper-cardioid (1/4), super-cardioid (3/8), and sub-cardioid (3/4). With four microphones, we may recover 
the 0th and 1st spatial harmonics of the 3D sound field as follows: 
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The spatial harmonic coefficients on the left side of the equations are sometimes called W, Y, Z and X in 
commercial sound-field microphones. Representation of the 3-dimensional sound field by these four 
coefficients is sometimes referred to as “B-format.” (the nomenclature is just to distinguish it from the 
direct microphone feeds, which are sometimes called “A-format”). 
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The terms Mmm ,,1 L  refer to M pressure-gradient microphones with principal axes at the angles 

),(,),,( 11 MM ΦΘΦΘ L . The Matrix D may be defined by its inverse as follows: 
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Each row of this matrix is just the directional pattern of one of the microphones. There must be exactly four 
microphones to unambiguously determine all the coefficients for the 0th and 1st order terms of the spherical 
harmonic expansion.  Of course, the angles of the microphones must be distinct (there should not be two 
microphones pointing in the same direction) and we cannot have all four microphone axes in a plane (since 
that would provide information only in one angular dimension and not two). In these cases, the matrix is 
well-conditioned and has an inverse. 
 
 
Virtual Microphones: 
 
Given this formulation, we may then transform these microphone feeds into another set of “virtual” 
microphone feeds as follows: 
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The matrix D~  represents the directionality and angles of the “virtual” microphones. The result of this will 
be the sound that would have been recorded if the virtual microphones had been present at the recording 
instead of the ones that were used. This allows us to make recordings using a “generic” sound-field 
microphone, then later matrix them into any set of microphones. For instance, we might pick just the first 
two virtual microphones, 1

~m  and 2
~m , and use them as a stereo pair for a standard CD recording. 

 
Any non-degenerate transformation of these four microphone feeds can be used to create any other set of 
microphone feeds, or can be used to generate speaker feeds for any number of speakers (greater than 4) that 
can recreate exactly the 0th and 1st spatial harmonics of the original sound field. 
 
To matrix the microphone feeds into a number of speakers, we reformulate the right-hand side of the matrix 
equation for panning as follows: 
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The matrix, 1R , is simply the 0th and 1st order spherical harmonics evaluated at the speaker positions. One 

must be careful to include the term m)1(− , since that is a direct result of the least-squares optimization 
required to derive these equations. 
 
Gradient Vector Calculation: 
 
Note also that the pressure gradient vector may also be generalized to 3 dimensions as follows: 
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 ∑= iiigc φθγ sinsin  

 
Then the angles may be computed as follows: 
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As usual in spherical coordinates, care must be taken at 0=θ  and πθ = , since φ  becomes 
indeterminate due to a singularity in the coordinate system. 
 
 


