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Abstract 
 
In a series of articles dating from the early 1970’s, Michel Gerzon suggested using cancellation 
between two adjacent microphones to achieve high directionality in a limited frequency range. In 
this paper, we extend this analysis to linear arrays of microphones by borrowing certain aspects of 
phased-array radar. The unique issue that audio has is the requirement that the frequency response 
be flat over 5 octaves or more. We show that this requirement can be met by the use of multiple 
colinear arrays, followed by a significant amount of signal processing. 

 
 
Background 
 
 
 
 
Derivation of the Phased-Array Microphone 
 
We start with an array of microphones placed at equal distances along a line. Let d be their separation. Let 
a plane wave impinge on the array at an angle of q from the perpendicular to the array. Assume that the 
plane wave is a sinusoid with a wavelength of l. If n is the number of microphones, then we can write the 
response to the plane wave in microphone k  as follows: 
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For convenience, we let the number of microphones be odd, and we call the center microphone number 
zero. The variable t represents time in seconds. If we sum these signals over all the microphones and 
simplify, we obtain the following: 
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The second term of the above represents the amplitude of the resulting sum. This is plotted for various 
values of wavelength in Figure 2. Note that the maximum response is developed in a direction 
perpendicular to the microphone array. The varying width of the response maximum show that different 
wavelengths will have different pickup patterns. 
 
We can “steer” the entire array by applying a simple delay to each microphone as follows: 
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where j is the angle where the greatest sensitivity is desired. 
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This has the effect of moving the maximum of the response of the array, but it also changes the width of the 
center lobe. Figure 3 shows the effect of “steering” the array from -45± to 45±. Note that the main response 
widens a bit as the array is steered away from the center. This is because the “effective” microphone 
spacing is reduced by the cosine of the angle. 
 
Since the amplitude term in equation (1) resembles a Fourier series, we might envision the use of window 
functions to change the tradeoff between center lobe width and side lobe suppression. Indeed, it works 
pretty much as one might anticipate. Figure 4 shows the effect of changing the strength of the window. We 
can see clearly the increase in lobe width with increasing window strength. 
 
So far, this is all taken directly from phased-array radar technology. To make this useful for audio, we need 
to accomplish the following: 
 
• Produce a uniform lobe width over all frequencies. 
• Achieve 10-octave range with flat frequency response (roughly 20 Hz to 20 kHz) 
 
The reason we want uniform lobe width is to reduce the coloration of the sound in the principal direction of 
the array. Since the array depends on cancellation and reinforcement of the wave fronts, it is necessarily a 
highly frequency-dependent process. We need to follow it with sufficient processing to minimize the 
frequency dependencies. 
 
The basic array exhibits reasonable response over about 2 octaves covering wavelengths from about 1.5d 
and 6d. Wavelengths longer than this produces very wide principal lobes, and wavelengths shorter than this 
produce multiple principal lobes. We can take the center octave of this (in a geometric -mean sense) as the 
main region of response, which is from about 2.12d to about 4.14d. The remainder of the response range 
will be used to overlap with other arrays that cover other octaves. 
 
We obtain wide response by having multiple arrays on the same line with the same microphone in the 
center. Figure 5 shows a simplified diagram with three colinear arrays with spacings at d, 2d and 4d. To 
cover the full audio range with equal spatial resolution would require a total of ten arrays. Each array will 
contribute one octave of frequency response to the overall result. The upper and lower half-octave of each 
array will overlap with the adjacent arrays. 
 
Controlling the Width of the Principal Lobe: 
 
The next problem to be addressed is control of the width of the principal lobe. As noted above, a window 
function can be used to adjust the width of the center lobe. Since we need a different lobe width at each 
different frequency, we must filter the output of each array with individual filters that are designed to 
realize a certain window function at each frequency. The filters have a further requirement that they sum 
properly with the responses of adjacent arrays to produce flat frequency response and uniform lobe width 
when summed over all the arrays. 
 

Since window functions always make the lobe wider and never more narrow, we must take the widest lobe 
width and match all the other widths to this. The widest lobe in the range of interest occurs at 6d. By a 
simple optimization, we can derive values of the beta parameter of the Kaiser-Bessel window that give us 
the desired window width. Figure 6 shows the result of such an optimisation. As the wavelength moves 
from 6d down to 1.5d, the beta parameter can be increased steadily to widen the principal lobe. Figure 7 
shows the result of applying different window functions to the array at different wavelengths. Note that at 
the shortest wavelength, the sideband rejection starts to rise again, probably due to the effective 
“shortening” of the array. 

There is nothing particularly special about the Kaiser-Bessel window. It is used here simply because it 
comes with a single parameter that controls the width of the window in a smooth, continuous, and 
monotonic fashion. One could equally derive an “optimum” window by a least-squares technique. This  
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would allow us to “fine tune” the response at any given frequency by adjusting the tradeoff between 
matching the center lobe to the prototype response (which is the response at the longest wavelength, 6d) to 
the off-axis response. We note in Figure 6 that the off-axis peaks get greater as the wavelength gets longer. 
This is to be expected, since smaller values of Beta allow the sidelobes to increase in amplitude. We can 
define a window function, kw , then define a weighting function at each angle as ip . We may then 

describe an objective function as follows: 
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where iD  represents the “desired” response. In our case, we might produce a desired response by 

windowing the response at the maximum wavelength of 6d. Using this as the prototype response, we can 
match this as closely as we like by choosing the weighting function, ip , and finding the window function 

coefficients, kw , that minimize F in equation (4).  Since the response of the array is linear with respect to 

any given window coefficient, equation (4) represents a linear least-squares problem. The normal equations 
can be formed and solved by any number of methods, such as singular-value decomposition [***ref]. One 
might choose, for instance, 1≡ip  to match the desired response as well as possible over the entire 

function. One might choose 10=ip  over the main lobe and 1=ip  to force the response to match the 

desired response as well as possible at the main lobe and less well outside the main lobe. 
 
Since the Kaiser-Bessel window is relatively simple, we will use this in the remainder of this discussion 
with the understanding that any suitable window that allows matching of the principal lobes can be used. 
 
Implementing the Frequency-Dependent Window: 

To implement a window function that varies with frequency, we must implement a filter for each 
microphone that has the desired gain at each wavelength. This gain is determined by the value of the 
Kaiser-Bessel window for that microphone at the value of beta indicated by the curve of Figure 6. The 
resulting window function is, in fact, a family of window functions, since the window function will be 
different for each different frequency. We might represent this as )(λkw  for the weighting of microphone 

k  at a wavelength of λ. Figure 7 shows a plot of four different microphone coefficients as functions of 
wavelength. These represent the filters that must be realized to produce equal main lobe widths over the 
frequency range of interest. There are many ways to calculate the filter coefficients [***refs McLellan, 
Dzecky, etc], so this aspect need not be discussed any further here. Since a filter will respond over the 
entire range, we do need to specify the curves outside of the range shown in Figure 7. It is sufficient to just 
extend the curves to zero frequency and the Nyquist rate by simply duplicating the values at the end points 
shown in Figure 7. That is, the response of the filter at wavelengths greater than 6d can have the same 
response at a wavelength of 6d, and wavelengths shorter than 1.5d can have the same response as at a 
wavelength of 1.5d. These values are somewhat arbitrary but are sufficient to produce a working design. 

Note that window functions are symmetric. This means that for an array of n microphone, only 2)1( −n  

windowing filters need be implemented. Microphones on each side of the center microphone may be 
summed before filtering, thus eliminating the need for a number of filters. 

Overlapping the Arrays: 



Copyright 2000-2001 James A. Moorer 

Unpublished Manuscript 4 1/17/2002 

As noted above, each array covers about two octaves. We will separate this into the main region from about 
2.12d to about 4.14d, and the overlap regions which constitute the remainder of the full two octave range. 
At the extremes of the frequency range, there is no overlap, so the highest array will cover up to 1.5 rd  and 

the lowest array will cover down to 6 1d , where jd  represents the microphone spacing of array j. Using 24 

kHz as the highest frequency for which coverage is desired, we can set the spacing of the microphones in 
the highest frequency array as about 1 cm. From this, we can derive the following: 

 

 

Microphone Spacing Low Frequency High Frequency 

1 cm 8000 Hz 22067 Hz 

2 cm 4000 Hz 8000 Hz 

4 cm 2000 Hz 4000 Hz 

8 cm 1000 Hz 2000 Hz 

16 cm 500 Hz 1000 Hz 

32 cm 250 Hz 500 Hz 

64 cm 125 Hz 250 Hz 

1.28 m 62.5 Hz 125 Hz 

2.56 m 22.11 Hz 62.5 Hz 

 

These frequencies are not exact, they have been rounded to convenient boundaries for clarity. Note again 
that the highest frequency array extends from 1.5d to 4.14d, and the lowest frequency band extends from 
2.12d to 6d. All the others extend from 2.12d to 4.14d. This shows that the entire frequency range may be 
captured by 9 collinear arrays. If desired, the larger arrays at lower frequencies may be eliminated. The 
only effect of this is that the pickup will not be highly directional at low frequencies due to the widening of 
the principal lobe of the array response. 

Note again that steering the array away from angle zero (straight ahead) does have the effect of widening 
the principal lobes, since it lowers the effective distance between the microphones. This table was 
computed at angle zero. We might choose the table based on a different angle. To be as consistent as 
possible, we should compute a different set of frequency-dependent window functions for each desired 
pickup angle so that the principal lobe width would be constant over the entire steering range of the array, 
which is from -45° to 45°. For many applications, however, it is acceptable to allow the width of the 
principal lobe to change, as long as other properties of the array are preserved, such as overall frequency 
response flatness, and matching of the principal lobes among the arrays to prevent coloration of the sound 
in the principal lobe. 

In addition to the filtering described above to apply the frequency-dependent window function to each 
microphone in each array, there is a filter that must be applied to the total response from a given array so 
that each array contributes to the overall response mainly in its principal frequency region. We also require 
that the sum of the responses across all the arrays be flat over the audible range. We may express this by 
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considering the impulse response of each array, then stating conditions on these responses which represent 
the design goals. We may say for convenience that the impulse response of each array will be symmetric. 
This is not strictly necessary, but it guarantees that there will be no phase variance from one array to the 
next. If we represent the impulse response of filter i  by ish , then we may state the conditions for flatness 

of overall frequency response as follows: 
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This is necessary and sufficient to guarantee perfectly flat frequency response. In general, this condition 
will not be met exactly. All we require is that the deviation from identity be sufficiently small so it is not 
heard as a coloration of the sound. 

To compute the overlap filters, we first create an “ideal” prototype filter that is constructed so that it 
overlaps perfectly. We then compute approximations to the prototype filter using standard approximation 
techniques [***refs Parks McLellan, etc]. Although we need to construct a separate prototype filter for 
each band, there are some similarities that make the process simpler. We can separate the filters into the 
two at the extremes of frequency, and all the rest. For the filters that are not at the extremes, we can require 
that they are identical, except that each band spans twice the frequency of the previous band. If we say that 
a particular frequency band goes from f to 2 f, then we may define a filter as follows: 
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Figure 10 shows a plot of this function for the frequency band 2000-4000 Hz.  As noted, the filter extends 
down to 1333 Hz and up to 5333 Hz. It will perfectly overlap the filters in the next higher and next lower 
frequency bands, and the sum of these overlapping filters is exactly one by construction. This is only one 
way that prototype filters may be chosen. There are any number of prototype filters that have this property. 

At the extremes of frequency, we simply allow the filter to stay at unity gain on one side or the other. Using 
the definitions above, we may define the filters for the extremes as follows: 
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We are being somewhat careless with the notation, in that the above formulas all use the same symbols for 

the important frequencies ( 1f , 2f , and cf ), but we intend them to apply just to the particular band of 

interest. As noted above, for the band from 2000 to 4000 Hz, 1f  would be 1333 Hz, and 2f  would be 
5333 Hz. For other bands, these frequencies would be scaled appropriately to represent the frequency range 

of the particular band. As an example, in the lowest band as shown in the table above, cf  would be 41.667 

Hz, and 2f  would be 83.333 Hz. Equation (10) represents the lowest filter, which extends down to zero 
frequency. 
 
Having defined a suitable set of prototype filters for overlapping the microphone arrays, we may compute 
filter coefficients that approximate these filters to any degree of accuracy. If the filters are all of zero-phase, 
then they will sum to an approximation of an impulse, described by Equation (5). This is by construction. 
Since the sum of all the prototype filters is unity, the resulting impulse response must be a simple impulse. 
Consequently, the sum of a series of filters that approximate the prototype filters will naturally be an 
approximation to an impulse. Of course, if the filters are not of zero-phase design, they will not necessarily 
sum to an impulse. 
 
We should point out that as we steer the array so that the principal lobe is at a non-zero angle, the effective 
shortening of the microphone spacing by the factor of )cos(θ  indicates that all the filters, both the 
windowing filters and the overlapping filters, should be recomputed using a microphone spacing of 

)cos(θd . Additionally, we can adjust the Beta parameter of the Kaiser-Bessel window (or whatever 
window function is used) so that the width of the principal lobes remains constant over the usable steering 
range of -45° to 45°. 
 
There has been an implicit decision in the above to implement the frequency-dependent window function 
and the overlapping filter using FIR, or finite impulse-response filters. This is not strictly necessary, but it 
allows us to use linear-phase filters. A linear-phase filter has an inherent delay in the signal path. If all the 
filters have the same number of multiplies, then they will all exhibit the same delay, and they may be 
summed. If the filters do not have the same number of multiplies, then we will have to equalize the delays 
before summing the results of the windowing filters. We can offset these delays by combining them with 
the delays necessary for “steering” the array (Equation (3)). If some microphones end up with negative 
delays, then all the microphones must be delayed to assure causality. 
 
About Directional Microphones: 
 
So far, we have not discussed the directional characteristics of the individual microphones in the array. This 
discussion is perfectly accurate if the microphones are omni-directional. Some modifications to the 
exposition will have to be made to show the effect of directional microphones, such as the pressure-
gradient type. Figure 11 shows a schematic representation of a pressure-gradient microphone. There are 
two diaphragms that are used to generate a voltage. These may then be weighted and summed to produce a 
directional pickup. This kind of microphone has the following angular response: 
 
(12) )cos()1( θCC −+  
 
The response straight ahead (zero angle) is exactly one. The response to the rear is (2C-1). For a cardioid 
pattern, C is set to one-half, so the response to the rear is exactly zero. Other values of C produce different 
patterns. 
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The effect of using a pressure-gradient microphone in this array is that the off-angle response will be 
multiplied by the directional pattern described by Equation (12). The effect would be that, for instance, the 
plot shown in Figure 3 would also show an amplitude difference as the principal lobe was steered from left 
to right. All the curves in Figure 3 would be multiplied by Equation (12). Note that we can easily normalize 
the peak amplitude of the principal lobes in Figure 3 by simply correcting for the expected attenuation due 
to the directional characteristics of the microphones. 
 
As Gerzon noted in his seminal work in this domain [***ref], it is also possible to take the voltages from 
the anterior and posterior diaphragms separately, thus producing two separate feeds from each microphone. 
These can then be combined later to produce directional characteristics. For instance, we might weight the 
anterior diaphragm by one-half and the posterior diaphragm by minus one-half and sum them to produce a 
forward-facing cardioid pickup, with 100% rejection of sounds coming from directly behind. Alternately, 
we might weight the posterior diaphragm with one-half and the anterior diaphragm with minus one-half to 
produce a rear-facing cardioid pickup with 100% rejection of sounds coming from directly in front. In this 
manner, using a single array of pressure-gradient microphones, we can mix the feeds of the diaphragms 
differently so that the same microphone array may be used for sounds in front of the array and behind the 
array with equal angular resolution and identical fidelity (frequency-response). Of course, the filtering 
shown in Figure 9 would have to be duplicated for the rear-facing array. 
 
Curvature of the Wavefront 
 
With phased-array radar, there is always the explicit assumption that the incoming wave is a plane wave. 
With the phased-array microphone, the plane wave assumption may be used when the sound sources are 
sufficiently distant from the microphone itself. If this is not the case, the wavefront will be curved. We can 
correct for this curvature, but we need to know the location of the sound source to make this correction. If 
the plane-wave approximation can be made, then we need not know the distance between the sound source 
and the array. 
 
To correct for the curvature of the wavefront, we need to apply a correction to the amplitude and to the 

arrival time. The amplitude correction is needed to offset the 21 r attenuation the wavefront experiences. 
The correction to the arrival time is necessary since the curvature will have the effect of delaying the off-
center parts of the wavefront. We can quantize this as follows: Let q  and 0r  be the angle and distance from 

the sound source to the center microphone of the array. We can then describe the amplitude and time delay 
compensation as follows: 
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where nr represents the distance from the sound source to microphone n. The feed from microphone n 

should be multiplied by nP  and should be advanced by n∆  seconds. 

 
Since this correction is specific to the particular location of the sound source,  we would expect that 
The rejection of the off-axis sound would be affected. Indeed, we will experience more “leakage” from off-
axis sounds when this kind of correction is applied. 
 
Further Sharpening of the Response 
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Note that when the sound source consists of a number of discrete sources at known angles and possibly 
known distances, then the response in a particular direction can be enhanced by subtracting off the signals 
from the known directions. Of course, the delays across the varying angles must be equalized before a 
signal from one angle can be subtracted from a signal from another angle. We might think of this as a kind 
of analog to the lateral inhibition found in optical receptors in the retina of the eye. 
 
Microphone Mismatch 
 
So far in this exposition, we have operated under the implicit assumption that the microphones were 
identical. This is, of course, not a valid assumption: there will be some mismatch. We should examine the 
effect of the mismatch and see what this requires of the microphones. 
 
We can obtain a worst-case bound on the error in the array by taking the second term of Equation (2), 
applying a window function, assuming that the cosine term is always unity, and assuming that the 
microphone error is a uniform factor of e. This gives us the following upper bound: 
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The window function is normalized so that the above sum (across all the points of the window function) is 
unity, so the error is bounded by the individual microphone error. We can take e to represent the expected 
value of the error. Some microphones will exhibit somewhat more error and some will exhibit somewhat 
less. 
 
A mean deviation of 1 dB then will produce error in the resulting pickup pattern that is about 18 dB down. 
The error we are talking about is a distortion of the pickup pattern itself, as shown in Figures 2, 3, and 4. 
This is not so important for the principal lobe, but it will make a significant difference in the sideband 
suppression, since in some cases, the error will be of the same order of magnitude as the sideband 
amplitude itself. We can expect that the actual sideband rejection will be several dB less than the 
theoretical values with a 1 dB variation among the microphones. Of course, better matching will allow us to 
achieve more sideband rejection. 
 
Effects of Room Reverberation on the Array 
 
So far we have discussed sounds coming from point sources that are in front of (or behind) the array. What 
happens when we have room reverberation, which can come from any direction? We may (somewhat 
artificially) divide room reverberation into three epochs: the direct sound, the early reflections, and 
everything else. The direct sound and the early reflections can all be treated as point sources of sound. The 
array can be steered to pick up each one of these sources separately (or not, depending on the goals of the 
recording). The late reverberation can be considered to be omnidirectional, and will thus affect the array 
uniformly regardless of the steering direction. Of course, non-uniform reflections, such as slap echos, will 
appear as specular reflections and thus will appear as point sources to the array. 
 
Extension to 3 Dimensions 
 
To extend the phased-array microphone to three dimensions, we must first extend it to two dimensions. 
This can be done by extending the array as shown in Figure 12. This shows a regular 2-dimensional array 
of microphones that is capable of steering plus or minus 45º in the horizontal direction and plus or minus 
45º in the vertical direction. Note that for some applications, it may not be necessary to have the same 
resolution in the vertical direction as in the horizontal direction. Figure 13 shows an array with higher 
resolution in the horizontal direction than in the vertical direction.  
 
A single 2-dimensional array can only be steered across about a 90º range in the forward direction and a 90º 
range in the reverse direction. To allow steering through the full 360º range, we need to use two arrays at 
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right angles as shown in Figure 14. Note that for this to work, each array would have to be acoustically 
“transparent”, so that off-axis sounds will easily pass through it to reach the other array. 
 
To extend the array to three dimensions, we take two 2-dimensional arrays shown in Figure 14 and place 
another array in the horizontal plane to cover the vertical direction. In this manner, we may achieve pickup 
in any direction.  
 
 
Construction of the Array 
 
There is a wide range of ways to implement the array, depending on the goals of the implementation. 
 
The most straightforward way to construct the array would be to simply connect wires to each transducer in 
the array and run all the wires to the required processing hardware. Of course, there must be preprocessing 
for each transducer in the form of a microphone preamplifier and an A/D converter. Figure 15 shows the 
processing necessary for each microphone in the array. Of course, different technology can affect the 
elements in the figure. For instance, the use of electret or other microphone technology may render the pre-
amplifier unnecessary. Similarly, it is possible to combine the microphone preamplifier (if any) with the 
first stage of the A/D converter. In any case, the result of the preprocessing is a sequence of digital audio 
samples. Since a large array may contain hundreds of microphones, running individual wires from each 
microphone to the required pre-processing and subsequent processing may be undesirable. 
 
With modern technology, high-levels of integration are possible. Both analog and digital circuitry can be 
put into the same package, if not the same substrate. See, for instance, US patent 5,051,799 [Paul et al]. It is 
possible to produce a very compact realization of the preamplifier and D/A converter. It is even possible to 
combine the microphone preamplifier with the first stage of the D/A converter for even a more compact 
realization. Such circuitry can be on the order of the same size as the microphone capsule or even smaller. 
Figure 17 shows the idea of including the preprocessing and A/D conversion in the same physical location 
as the microphone capsule itself. In addition, some kind of data multiple xing circuit is included with each 
microphone so that the outputs of multiple microphones may be combined into a single wire. A wide range 
of multiplexing technology may be used, ranging from simple time-domain or frequency-domain 
multiplexing [US patent 4,922,536, Hoque] to computer-type network technology, such as Ethernet 
[Metcalf and Boggs, 1976]. The end result of this multiplexing is that the data from the entire array is 
available in a small number of cables, or even a single cable, in a manner such that the samples from each 
individual microphone may be separated for the required spatial processing as shown in Figure 9. 
 
Figure 18 shows the logical extension of this train of logic to the microphone array “fabric”. Here, we show 
power being fed to each transducer/processor/multiplexor node via alternating vertical positive and 
negative supply wires. One of the wires can also be used as the network medium itself by AC-coupling the 
data back onto the wire. Similarly, clock distribution to the individual A/D converters may be accomplished 
by placing the clock itself on one of the supply wires. By use of frequency-domain multiplexing, the data 
can be placed on the wire in frequency bands that are well above the clock frequency. 
 
Note that the entire array could just as easily be wireless (except for the supply rails). Each node could 
simply broadcast a low-power RF signal that could be received and demultiplexed for further processing. 
Each node would have to have some unique ID in the form of a network address, a dedicated frequency, a 
dedicated time slot, or any other way of  identifying the node so that the samples may be recovered and 
related back to the original array position of the node. 
 
It is clear that any medium of transmission could be used to convey the data from the array to the 
processing elements. For instance, each node could emit digital data as light on wavelengths that people 
can not see. The data could be multiplexed either by the wavelength of the individual lights, or by time so 
that only one node transmitted data at a time. 
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Hybrid schemes are also possible. That is, “clusters” of some number of nodes in a particular area could be 
multiplexed together with, say, fiber-optic cables used to relay the data from each cluster back to the spatial 
processing equipment. 
 
 
 
Relation to Sound-Field Theory 
 
In so-called “sound field” theory [***refs Gerzon], we expand the sound pressure wave about the listener 
in a series of spherical harmonics [***refs Hobson, MacRoberts]. This is not an artificial construct. It falls 
directly out of the solution to Laplace’s equation in spherical coordinates [***Morse & Feschbach]. To the 
extent that air is linear, sound waves will obey Laplace’s equation, and thus the sound field around a 
listener can always be represented as a sum of spherical harmonics. This sum is not necessarily finite. If the 
sound source is a true point source, then the sum will not be finite. It can be approximated by a finite sum. 
As is typical with this kind of expansion, applying a window function can help smooth out the overshoot 
(“Gibbs-type” phenomena) inherent in truncating an infinite series. 
 
The point of making this expansion is that it gives a rational basis for trying to recreate the recording 
environment at the time of playback. The idea is that if we can recreate the spherical harmonic expansion of 
the sound field about the listener, then we have recreated the waveform at one point in space. This assertion 
is not controversial: it is a tautology. What can be argued is how many spherical harmonics are necessary to 
do a good job of reconstructing the sound field. I have no particular wisdom to offer on this point except 
that more is better. 
 
The problem with actually doing this is two-fold: first is that we need at least one speaker for each 
harmonic that we wish to reproduce, and second is that modern microphones are only capable of first-order 
directional patterns, as noted in Equation (12). The point of the phased-array microphone is that it is 
possible to use this directionality to directly measure the higher-order harmonics of the sound field around 
the center microphone of the array. By using more and more microphones in the array, the directional 
pattern can be made arbitrarily narrow. Consequently we can recover any number of terms of the spherical 
harmonic expansion about the center microphone by increasing the number of microphones. 
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Figure 1 – A linear array of microphones with a spacing of d. We assume a plane wave impinges on the 
array at an angle q from the perpendicular to the array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Amplitude of the response of the sum of all the feeds from the microphone array with changing 
angle of incidence. Each curve represents a different wavelength from 1.5d (narrowest) to 6d (widest). 
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Figure 3 – This shows the effect of “steering” the array by adding a simple delay to each microphone. The 
wavelength of the test signal was set to a constant 2.5d. Note the widening of the principal lobe as we steer 
the array away from directly in front. This is due to the effective narrowing of the microphone spacing by a 
factor of )cos(θ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – this shows the effect of using a window function to change the tradeoff between center lobe 
width and side lobe suppression. The window was the Kaiser-Bessel window with the b parameter varying 
between 0.5 and 5.5. 
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Figure 5 – Three overlapping arrays sharing center microphones. The arrays have spacings of d, 2d, and 4d. 
To attain full frequency response over the audio range with equal spatial resolution at all frequencies, a 
total of at least ten colinear arrays would be required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Plot of Beta parameter to Kaiser-Bessel window for values of wavelength in multiples of the 
microphone spacing. These values of Beta equalizes the main lobe widths for the given wavelength. This 
curve appears to be largely independent of the number of microphones in the array. 
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Figure 7: Lobe widths after normalization by adjusting the Beta parameter of the Kaiser-Bessel window. 
The wavelengths span the range from 1.5d to 6d. Note that the sideband gain increases at the ends of the 
frequency range due to the windowing. This is using 15 microphones in a single array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Typical windowing gain curves for four microphones in a 9-microphone array at various values 
of wavelength (in multiples of d). These represent particular points of the Kaiser-Bessel window as the 
Beta parameter is swept as shown in Figure 6. The upper curve represents the center microphone, and the 
center point of the window function. 
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Figure 9: Complete diagram of processing for overlapped microphone arrays. Each microphone goes to a 
filter that imple ments the frequency-dependent window and the “steering” delay. Each windowed array is 
then filtered so that the arrays overlap properly to produce an overall flat response. One windowing filter is 
shown for each microphone for clarity. Since the window functions are symmetric, pairs of microphones 
equidistant from the center microphone would be summed, then filtered by a single frequency-dependent 
window filter. If it is desired to simultaneously receive signals from different directions (that is, with the 
array “steered” to different angles), then separate processing would have to be supplied for each desired 
angle. Of course, the direct microphone feeds could be stored and processed to extract signals at different 
angles at a later time. 
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Figure 10: One kind of prototype filter covering the band from 2000 Hz to 4000 Hz. For proper overlap, the 
filter extends into the adjacent bands from 1333 Hz to 5333 Hz. The filter for the next higher or lower 
frequency band may be obtained simply by relabeling the frequency axis with either twice the frequencies 
or half the frequencies. Of course, this filter design is not unique. There are many suitable choices for the 
overlap filter. 
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Figure 11: Diagram of a pressure-gradient condenser microphone. Typically, the interior capsule is held at 
ground, and the variations of capacitance between the diaphragms and the capsule generate a voltage. To 
obtain directional characteristics, the voltages of the anterior and posterior diaphragms may be weighted 
and subtracted. This produces the familiar directional patterns, such as cardioid, hypercardioid, and so on. 
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Figure 12: Regular 2-dimensional array with equal resolution in horizontal and vertical directions. 
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Figure 13: 2-dimensional microphone array showing unequal resolution in vertical and horizontal 
directions. 
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Figure 14: Two 2-dimensional arrays placed at right angles. Since each array is capable of steering across 
an angle of 90° in the forward direction and 90° in the backward direction, two arrays placed at right angles 
can cover all directions. 
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Figure 15: A direct implementation of the array has a wire from each microphone in the array to the 
required preprocessing (microphone preamplifier and A/D converter) and subsequent processing (Figure 9). 
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Figure 16: Microphone capsule with integrated pre-processing. In this configuration, miniaturized 
preamplifier and A/D stages are integrated with some kind of multiplexing (network) interface. This 
interface can use frequency or time-domain multiplexing, or may interface to a general-purpose network, 
such as Ethernet [**ref]. 
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Figure 17: Each oval above represents a complete transducer, preprocessor, and network interface as shown 
in Figure 16. This figure shows how the array may be powered by a vertical array of alternating positive 
and negative supplies. One rail (e.g. the positive wires) may also serve as the medium for the network (or 
additional wires may be used for the network interface). 
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